Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.291
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362051

RESUMO

To develop new alkaline phosphatase inhibitors (ALP), a series of pyrazolo-oxothiazolidine derivatives were synthesized and biologically assessed, and the results showed that all of the synthesized compounds significantly inhibited ALP. Specifically, compound 7g displayed the strongest inhibitory activity (IC50 = 0.045 ± 0.004 µM), which is 116-fold more active than monopotassium phosphate (IC50 = 5.242 ± 0.472 µM) as a standard reference. The most potent compound among the series (7g) was checked for its mode of binding with the enzyme and shown as non-competitively binding with the target enzyme. The antioxidant activity of these compounds was examined to investigate the radical scavenging effect. Moreover, the MTT assay method was performed to evaluate their toxic effects on the viability of MG-63 human osteosarcoma cells, and all compounds have no toxic effect on the cells at 4 µM. Computational research was also conducted to examine the binding affinity of the ligands with alkaline phosphatase, and the results revealed that all compounds showed good binding energy values within the active site of the target. Therefore, these novel pyrazolo-oxothiazolidine derivatives might be employed as promising pharmacophores for potent and selective alkaline phosphatase inhibitors.


Assuntos
Fosfatase Alcalina , Inibidores Enzimáticos , Humanos , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Pirazóis/química , Pirazóis/farmacologia , Tiazóis/química , Tiazóis/farmacologia
2.
J Bone Miner Res ; 37(10): 2033-2043, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36054139

RESUMO

Inhibition of tissue-nonspecific alkaline phosphatase (TNAP) may prevent ectopic soft tissue calcification by increasing endogenous pyrophosphate (PPi). DS-1211 is a potent and selective novel small molecule TNAP inhibitor with well-characterized pharmacokinetics (PKs) in rodent and monkey. Herein, we report a comprehensive summary of studies establishing the pharmaceutical profile of DS-1211. In vitro studies characterized the mode of inhibition and inhibitory effects of DS-1211 on three human alkaline phosphatase (ALP) isozymes-TNAP, human intestinal ALP, human placental ALP-and on ALP activity across species in mouse, monkey, and human plasma. In vivo PK and pharmacodynamic (PD) effects of a single oral dose of DS-1211 in mice and monkeys were evaluated, including biomarker changes in PPi and pyridoxal 5'-phosphate (PLP). Oral bioavailability (BA) was determined through administration of DS-1211 at a 0.3-mg/kg dose in monkeys. In vitro experiments demonstrated DS-1211 inhibited ALP activity through an uncompetitive mode of action. DS-1211 exhibited TNAP selectivity and potent inhibition of TNAP across species. In vivo studies in mice and monkeys after single oral administration of DS-1211 showed linear PKs, with dose-dependent inhibition of ALP activity and increases in plasma PPi and PLP. Inhibitory effects of DS-1211 were consistent in both mouse and monkey. Mean absolute oral BA was 73.9%. Overall, in vitro and in vivo studies showed DS-1211 is a potent and selective TNAP inhibitor across species. Further in vivo pharmacology studies in ectopic calcification animal models and clinical investigations of DS-1211 in patient populations are warranted. © 2022 Daiichi Sankyo, Inc. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fosfatase Alcalina , Difosfatos , Inibidores Enzimáticos , Animais , Feminino , Humanos , Camundongos , Gravidez , Fosfatase Alcalina/antagonistas & inibidores , Haplorrinos , Isoenzimas , Placenta , Piridoxal , Inibidores Enzimáticos/farmacologia
3.
J Biomed Nanotechnol ; 18(4): 1131-1137, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35854462

RESUMO

This study intends to assess whether iron oxide nanoparticles affect periodontal injury and collagenase-1 (COL-1), and alkaline phosphatase (ALP) in rats. In this study, the ALP activity and Col-1 concentration in rats with periodontal injury were determined.We detected the periodontal histopathological changes and expression of periodontal pocket depth (PD) and attachment loss (AL) by Hematoxylin and eosin (HE) staining.We also detected Col-1 and ALP proteins in periodontal tissues by Western blot. Real-time reverse transcription-polymerase chain reaction (RT-PCR) detected Col-1 and ALP mRNA level in periodontal tissues of rats in each group, while ALP activity and Col-1 concentration in gingival crevicular fluid in model group increased compared to sham group (P < 0.05). After intervention by iron oxide nanoparticles, ALP activity and Col-1 concentration in the gingival crevicular fluid of model rats decreased greatly (P < 0.05). The gingival atrophy was more serious in model group, and many inflammatory cells infiltrated into the tissue and destroyed the alveolar tissue. Meanwhile, the periodontal tissue from rats in intervention group was greatly improved, and the degree of alveolar bone destruction was also significantly reduced, while the PD and AL periodontal indexes were significantly inhibited (P < 0.05). The protein and relative expression showed that the protein and mRNA expressions of ALP and Col-1 in periodontal tissue from model group were lower than those in sham group (P < 0.05). After intervention by iron oxide nanoparticles, the protein and mRNA expressions of ALP and Col-1 in the periodontal tissues in intervention group increased (P < 0.05). Iron oxide nanoparticles can thus inhibit the expression of ALP and COL-1 in periodontal injury rats, and improve the periodontal injury tissue.


Assuntos
Fosfatase Alcalina , Colagenases , Líquido do Sulco Gengival , Nanopartículas Magnéticas de Óxido de Ferro , Inibidores de Metaloproteinases de Matriz , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Animais , Colagenases/metabolismo , Líquido do Sulco Gengival/química , Líquido do Sulco Gengival/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Inibidores de Metaloproteinases de Matriz/farmacologia , Bolsa Periodontal/tratamento farmacológico , RNA Mensageiro/genética , Ratos
4.
Mol Divers ; 26(6): 3241-3254, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35083622

RESUMO

Thiazole derivatives are known inhibitors of alkaline phosphatase, but various side effects have reduced their curative efficacy. Conversely, compounds bearing azomethine linkage display a broad spectrum of biological applications. Therefore, combining the two scaffolds in a single structural unit should result in joint beneficial effects of both. A new series of azomethine-clubbed thiazoles (3a-i) was synthesized and appraised for their inhibitory potential against human tissue non-specific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP). Compounds 3c and 3f were found to be most potent compounds toward h-TNAP with IC50 values of 0.15 ± 0.01 and 0.50 ± 0.01 µM, respectively, whereas 3a and 3f exhibited maximum potency for h-IAP with IC50 value of 2.59 ± 0.04 and 2.56 ± 0.02 µM, respectively. Molecular docking studies were also performed to find the type of binding interaction between potential inhibitor and active sites of enzymes. The enzymes inhibition kinetics studies were carried out to define the mechanism of enzyme inhibition. The current study leads to discovery of some potent inhibitors of alkaline phosphatase that is promising toward identification of compounds with druggable properties.


Assuntos
Fosfatase Alcalina , Inibidores Enzimáticos , Tiazóis , Humanos , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiazóis/farmacologia
5.
J Neurochem ; 160(3): 305-324, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34905223

RESUMO

Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1, and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Nucleotidases/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , 5'-Nucleotidase/antagonistas & inibidores , Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Animais , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo
6.
Cardiovasc Res ; 118(1): 84-96, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070177

RESUMO

Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.


Assuntos
Fosfatase Alcalina/metabolismo , Artérias/metabolismo , Calcificação Vascular/metabolismo , Fosfatase Alcalina/antagonistas & inibidores , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Artérias/fisiopatologia , Fármacos Cardiovasculares/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Humanos , Fosforilação , Transdução de Sinais , Especificidade por Substrato , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia , Calcificação Vascular/fisiopatologia
7.
J Med Chem ; 64(21): 15799-15809, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34709820

RESUMO

Placental alkaline phosphatase (PLAP) is an abundant surface antigen in the malignancies of the female reproductive tract. Nevertheless, the discovery of PLAP-specific small organic ligands for targeting applications has been hindered by ligand cross-reactivity with the ubiquitous tissue non-specific alkaline phosphatase (TNAP). In this study, we used DNA-encoded chemical libraries to discover a potent (IC50 = 32 nM) and selective PLAP inhibitor, with no detectable inhibition of TNAP activity. Subsequently, the PLAP ligand was conjugated to fluorescein; it specifically bound to PLAP-positive tumors in vitro and targeted cervical cancer in vivo in a mouse model of the disease. Ultimately, the fluorescent derivative of the PLAP inhibitor functioned as a bispecific engager redirecting the killing of chimeric antigen receptor-T cells specific to fluorescein on PLAP-positive tumor cells.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , DNA/genética , Inibidores Enzimáticos/farmacologia , Neoplasias dos Genitais Femininos/química , Isoenzimas/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Chem Commun (Camb) ; 57(71): 8885-8888, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486626

RESUMO

A unique ratiometric MALDI-MS strategy is proposed for the convenient and reliable quantitation of alkaline phosphatase based on the homogeneous enzymatic cleavage of a coded phosphopeptide (CPP)-triggered double-signal output. The dynamic range can be tuned by simply adjusting the primary concentration of CPP. The proposed strategy is also capable of being challenged by real human serum, and thus it may offer a wonderful approach for the convenient identification and quantitation of various enzyme activities in clinical diagnosis.


Assuntos
Fosfatase Alcalina/sangue , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/química , Ácido Edético/química , Inibidores Enzimáticos/química , Humanos , Limite de Detecção , Fosfopeptídeos/análise , Fosfopeptídeos/química , Estudo de Prova de Conceito , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Science ; 373(6553)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437092

RESUMO

Systematic and extensive investigation of enzymes is needed to understand their extraordinary efficiency and meet current challenges in medicine and engineering. We present HT-MEK (High-Throughput Microfluidic Enzyme Kinetics), a microfluidic platform for high-throughput expression, purification, and characterization of more than 1500 enzyme variants per experiment. For 1036 mutants of the alkaline phosphatase PafA (phosphate-irrepressible alkaline phosphatase of Flavobacterium), we performed more than 670,000 reactions and determined more than 5000 kinetic and physical constants for multiple substrates and inhibitors. We uncovered extensive kinetic partitioning to a misfolded state and isolated catalytic effects, revealing spatially contiguous regions of residues linked to particular aspects of function. Regions included active-site proximal residues but extended to the enzyme surface, providing a map of underlying architecture not possible to derive from existing approaches. HT-MEK has applications that range from understanding molecular mechanisms to medicine, engineering, and design.


Assuntos
Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/química , Biocatálise , Domínio Catalítico , Flavobacterium/enzimologia , Hidrólise , Cinética , Microfluídica , Modelos Moleculares , Mutação , Oxigênio/metabolismo , Fosfatos/metabolismo , Conformação Proteica , Dobramento de Proteína , Termodinâmica
10.
Bioorg Med Chem ; 44: 116281, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34216983

RESUMO

Quinone methide (QM) species have been included in the design of various functional molecules. In this review, we present a comprehensive overview of bioanalytical tools based on QM chemistry. In the first part, we focus on self-immolative linkers that have been incorporated into functional molecules such as prodrugs and fluorescent probes. In the latter half, we outline how the highly electrophilic property of QMs, enabling them to react rapidly with neighboring nucleophiles, has been applied to develop inhibitors or labeling probes for enzymes, as well as self-immobilizing fluorogenic probes with high spatial resolution. This review systematically summarizes the versatile QM toolbox available for investigating biological processes.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacologia , Indolquinonas/farmacologia , beta-Galactosidase/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Animais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Indolquinonas/síntese química , Indolquinonas/química , Estrutura Molecular , beta-Galactosidase/metabolismo
11.
Biomed Res Int ; 2021: 6618349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816618

RESUMO

Snakebite is one of the most neglected diseases of developing countries. Deaths due to snakebite envenoming are quite high in Pakistan, and many deaths are caused by Echis carinatus envenomation. Traditional use of medicinal plants against snakebites is a common practice in Pakistan due to countless benefits. The current study was performed with the objective to evaluate eighteen Pakistani medicinal plants inhibitory potential against hyaluronidase and alkaline phosphatase enzymes of Pakistani Echis carinatus venom. Hyaluronidase activity (0.2-1.6 mg/0.1 mL) and alkaline phosphatase activity (0.1-0.8 mg/0.1 mL) were measured in dose-dependent manner. Crude methanolic extracts of medicinal plants were used for in vitro investigation of their inhibitory activity against toxic enzymes. All active plants were fractioned using different solvents and were again analyzed for inhibitory activity of same enzymes. Results indicated all plants were able to neutralize hyaluronidase that Swertia chirayita (Roxb. ex Flem.) Karst., Terminalia arjuna Wight and Arn, Rubia cordifolia Thumb., and Matthiola incana (L.) R.Br. inhibited maximum hyaluronidase activity equivalent to standard reference (p > 0.5). Pakistani medicinal plants are dense with natural neutralizing metabolites and other active phytochemicals which could inhibit hyaluronidase activity of Pakistani Echis carinatus venom. Further advanced studies at molecular level could lead us to an alternative for envenoming of Pakistani Echis carinatus venom.


Assuntos
Fosfatase Alcalina , Hialuronoglucosaminidase , Extratos Vegetais/química , Plantas Medicinais/química , Proteínas de Répteis , Venenos de Víboras/enzimologia , Viperidae , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/química , Animais , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/química , Proteínas de Répteis/antagonistas & inibidores , Proteínas de Répteis/química
12.
Sci Rep ; 11(1): 7667, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828158

RESUMO

SapM is a secreted virulence factor from Mycobacterium tuberculosis critical for pathogen survival and persistence inside the host. Its full potential as a target for tuberculosis treatment has not yet been exploited because of the lack of potent inhibitors available. By screening over 1500 small molecules, we have identified new potent and selective inhibitors of SapM with an uncompetitive mechanism of inhibition. The best inhibitors share a trihydroxy-benzene moiety essential for activity. Importantly, the inhibitors significantly reduce mycobacterial burden in infected human macrophages at 1 µM, and they are selective with respect to other mycobacterial and human phosphatases. The best inhibitor also reduces intracellular burden of Francisella tularensis, which secretes the virulence factor AcpA, a homologue of SapM, with the same mechanism of catalysis and inhibition. Our findings demonstrate that inhibition of SapM with small molecule inhibitors is efficient in reducing intracellular mycobacterial survival in host macrophages and confirm SapM as a potential therapeutic target. These initial compounds have favourable physico-chemical properties and provide a basis for exploration towards the development of new tuberculosis treatments. The efficacy of a SapM inhibitor in reducing Francisella tularensis intracellular burden suggests the potential for developing broad-spectrum antivirulence agents to treat microbial infections.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Fosfatase Alcalina/antagonistas & inibidores , Francisella tularensis/enzimologia , Humanos , Terapia de Alvo Molecular , Mycobacterium tuberculosis/patogenicidade , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico
13.
Anal Bioanal Chem ; 413(9): 2457-2466, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33674935

RESUMO

In this study, an effective and portable method for enzyme activity detection and inhibitory activity evaluation was developed based on the alkaline phosphatase (ALP)-mediated reaction in a personal glucose meter (PGM). In this method, ALP catalyzes the hydrolysis of substrate amifostine (WR-2721) to produce ethanethiol (WR-1065), which can trigger the reduction of ferricyanide (K3[Fe(CN)6]), an electron transfer mediator in glucose test strips, to ferrocyanide ([K4Fe(CN)6]) and generate a PGM-detectable signal. Thus, WR-1065 can be directly quantified by a PGM as simply as detecting glucose in blood. After being systematically optimized, the method was applied to evaluate the inhibitory activity of ten small-molecule compounds and six Cordyceps sinensis (CS) extracts on ALP. The results showed that adenosine-5-monophosphate and theophylline had high inhibitory activity, but two CS extracts have promotion potency on ALP with the values of -20.7 ± 1.3% and -46.6 ± 2.1%, respectively. Moreover, the binding sites and modes of small-molecule compounds to ALP were investigated by molecular docking, while a new substrate competitor with theoretically good inhibitory activity against ALP was designed by scaffold hopping. Finally, the accuracy of the PGM method for enzyme activity detection was assessed by detecting ALP from milk samples, and the recovery ranged from 87.7% to 116.9%. These results indicate that it is feasible to evaluate enzyme activity and the inhibitory activity of small-molecule compounds and CS extracts on ALP using a PGM based on ALP-mediated reaction. Graphical abstract.


Assuntos
Fosfatase Alcalina/metabolismo , Técnicas Biossensoriais/métodos , Glicemia/análise , Ensaios Enzimáticos/métodos , Fosfatase Alcalina/antagonistas & inibidores , Técnicas Biossensoriais/instrumentação , Ensaios Enzimáticos/instrumentação , Inibidores Enzimáticos/farmacologia , Desenho de Equipamento , Humanos , Modelos Moleculares
14.
J Mater Chem B ; 9(13): 2998-3004, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33635306

RESUMO

Considering the limited sensitivity and accuracy of single-signal assay strategies, the multi-signal assay strategy has sparked significant excitement in recent years. In this study, for the first time, we reported a one-pot method in situ synthesis of carbon-containing nanoparticles (CNPs) via p-aminophenol (AP) and diethylenetriamine (DETA). The CNP solution exhibits yellow and light blue fluorescence under UV-light. Moreover, the CNPs exhibited excellent photoluminescence stability even under extreme conditions. Inspired by the alkaline phosphatase (ALP)-triggered specific catalytic reaction, we constructed an ultrasensitive fluorescence and colorimetric two-channel strategy for monitoring the ALP activity. By optimizing the detection parameters, the detection limits for both fluorometric and colorimetric were 0.05 mU mL-1. Moreover, the strategy showed high specificity and was successfully applied to monitor the ALP activity level in human serum samples. The analytical strategy opened a new window for the detection of the ALP activity, screening of the ALP inhibitor, and disease diagnosis.


Assuntos
Fosfatase Alcalina/sangue , Colorimetria , Corantes Fluorescentes/química , Fluorometria , Nanopartículas/química , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Tamanho da Partícula
15.
Bioorg Med Chem Lett ; 35: 127783, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422607

RESUMO

A new unique sesquiterpene lactone, bicyclolamellolactone A (1), was isolated together with two known monocyclofarnesol-type sesquiterpenes, lamellolactones A (2) and B (3), from the Indonesian marine sponge Lamellodysidea sp. (cf. L. herbacea). The planar structure of 1 was assigned based on its spectroscopic data (1D and 2D NMR, HRESIMS, UV, and IR spectra). The relative and absolute configuration of 1 was determined by comparison of its calculated and experimental electronic circular dichroism spectra in combination with NOESY correlations. Compounds 1-3 inhibited bone morphogenic protein (BMP)-induced alkaline phosphatase activity in mutant BMP receptor-carrying C2C12 cells with IC50 values of 51, 4.6, and 20 µM, respectively.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Lactonas/farmacologia , Osteoblastos/efeitos dos fármacos , Poríferos/química , Sesquiterpenos/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Indonésia , Lactonas/química , Lactonas/isolamento & purificação , Camundongos , Estrutura Molecular , Osteoblastos/metabolismo , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
16.
Analyst ; 146(2): 521-528, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33227102

RESUMO

Alkaline phosphatase (ALP) is an essential hydrolase and widely distributed in living organisms. It plays important roles in various physiological and pathological processes. Herein, a turn-on near-infrared (NIR) fluorescent probe (DXMP) was developed for sensitive detection of ALP activity both in vitro and in vivo based on the intramolecular charge transfer (ICT) mechanism. Upon incubation with ALP, DXMP exhibited a strong fluorescence increment at 640 nm, which was attributed to the fact that ALP-catalyzed cleavage of the phosphate group in DXMP induced the transformation of DXMP into DXM-OH. The probe exhibited prominent features including outstanding selectivity, high sensitivity, and excellent biocompatibility. More importantly, it has been successfully used to detect and image endogenous ALP in living cells and zebrafish.


Assuntos
Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Corantes Fluorescentes/química , Raios Infravermelhos , Imagem Óptica/métodos , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/sangue , Animais , Biocatálise , Sobrevivência Celular , Transporte de Elétrons , Células Hep G2 , Humanos , Cinética , Fosfatos/química , Peixe-Zebra
17.
Mar Drugs ; 18(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265937

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disorder with heterotopic ossification (HO) in soft tissues. The abnormal activation of bone morphogenetic protein (BMP) signaling by a mutant activin receptor-like kinase-2 (ALK2) leads to the development of HO in FOP patients, and, thus, BMP signaling inhibitors are promising therapeutic applications for FOP. In the present study, we screened extracts of 188 Indonesian marine invertebrates for small molecular inhibitors of BMP-induced alkaline phosphatase (ALP) activity, a marker of osteoblastic differentiation in a C2C12 cell line stably expressing ALK2(R206H) (C2C12(R206H) cells), and identified five marine sponges with potent ALP inhibitory activities. The activity-guided purification of an EtOH extract of marine sponge Dysidea sp. (No. 256) resulted in the isolation of dysidenin (1), herbasterol (2), and stellettasterol (3) as active components. Compounds 1-3 inhibited ALP activity in C2C12(R206H) cells with IC50 values of 2.3, 4.3, and 4.2 µM, respectively, without any cytotoxicity, even at 18.4-21.4 µM. The direct effects of BMP signaling examined using the Id1WT4F-luciferase reporter assay showed that compounds 1-3 did not decrease the reporter activity, suggesting that they inhibit the downstream of the Smad transcriptional step in BMP signaling.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Dysidea/metabolismo , Inibidores Enzimáticos/farmacologia , Mioblastos Esqueléticos/efeitos dos fármacos , Miosite Ossificante/tratamento farmacológico , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Esteróis/farmacologia , Tiazóis/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 4/toxicidade , Linhagem Celular , Inibidores Enzimáticos/isolamento & purificação , Indonésia , Camundongos , Estrutura Molecular , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patologia , Miosite Ossificante/metabolismo , Miosite Ossificante/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Esteróis/isolamento & purificação , Relação Estrutura-Atividade , Tiazóis/isolamento & purificação
18.
Hypertension ; 76(4): 1308-1318, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32829665

RESUMO

Here, we tested the hypothesis that TNAP (tissue nonspecific alkaline phosphatase) modulates vascular responsiveness to norepinephrine. In the isolated, Tyrode's-perfused rat mesentery, 50 µmol/L of L-p-bromotetramisole (L-p-BT; selective TNAP inhibitor, Ki=56 µmol/L) significantly reduced TNAP activity and caused a significant 9.0-fold rightward-shift in the norepinephrine concentration versus vasoconstriction relationship. At 100 µmol/L, L-p-BT further reduced mesenteric TNAP activity and caused an additional significant right-shift of the norepinephrine concentration versus vasoconstriction relationship. A higher concentration (200 µmol/L) of L-p-BT had no further effect on either mesenteric TNAP activity or norepinephrine-induced vasoconstriction. L-p-BT did not alter vascular responses to vasopressin, thus ruling-out nonspecific suppression of vascular reactivity. Since in the rat mesenteric vasculature α1-adrenoceptors mediate norepinephrine-induced vasoconstriction, these finding indicate that TNAP inhibition selectively interferes with α1-adrenoceptor signaling. Additional experiments showed that the effects of TNAP inhibition on norepinephrine-induced vasoconstriction were not mediated by accumulation of pyrophosphate or ATP (TNAP substrates) nor by reduced adenosine levels (TNAP product). TNAP inhibition significantly reduced the Hillslope of the norepinephrine concentration versus vasoconstriction relationship from 1.8±0.2 (consistent with positive cooperativity of α1-adrenoceptor signaling) to 1.0±0.1 (no cooperativity). Selective activation of A1-adenosine receptors, which are known to participate in coincident signaling with α1-adrenoceptors, reversed the suppressive effects of L-p-BT on norepinephrine-induced vasoconstriction. In vivo, L-p-BT administration achieved plasma levels of ≈60 µmol/L and inhibited mesenteric vascular responses to exogenous norepinephrine and sympathetic nerve stimulation. TNAP modulates vascular responses to norepinephrine likely by affecting positive cooperativity of α1-adrenoceptor signaling via a mechanism involving A1 receptor signaling.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Membrana/metabolismo , Mesentério/efeitos dos fármacos , Norepinefrina/farmacologia , Tetramizol/análogos & derivados , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/genética , Animais , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Mesentério/metabolismo , Ratos , Tetramizol/farmacologia , Xantinas/farmacologia
19.
Anal Chem ; 92(18): 12716-12724, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32815715

RESUMO

On-site quantitative analysis of pesticide is of significant importance for addressing serious public health issues in clinical, food, and environmental settings. Herein, we designed a novel smartphone-assisted sensing platform for on-site monitoring of 2,4-dichlorophenoxyacetic acid (2,4-D) based on carbon dots/cobalt oxyhydroxide nanosheet (CDs/CoOOH) composite. In this work, a red emissive CDs/CoOOH composite was proposed as a signal indicator for shielding background interference, enhancing anti-interference capability. 2,4-D as an inhibitor of alkaline phosphatase could specifically suppress the production of ascorbic acid, which restrained in situ etching of the CDs/CoOOH composite and further triggered the fluorescence response of the biosensor. By employing a lab-on-smartphone based device and self-designed application software, the fluorescence image was directly captured and analyzed with a sensitive detection limit of 100 µg L-1 for 2,4-D. Merging the CDs/CoOOH composite-based fluorometric system with the smartphone-assisted optical reader, such a cost-effective and portable platform provided a new sight for on-site monitoring of pesticide and expanded application prospect in the field of biological analysis.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Técnicas Biossensoriais , Carbono/química , Inibidores Enzimáticos/análise , Pontos Quânticos/química , Smartphone , Ácido 2,4-Diclorofenoxiacético/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Cobalto/química , Inibidores Enzimáticos/farmacologia , Nanopartículas/química , Imagem Óptica , Óxidos/química , Software , Espectrofotometria Ultravioleta
20.
Bioorg Chem ; 102: 104088, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32711087

RESUMO

Alkaline phosphatases (APs) are a class of homodimeric enzymes which physiologically possess the dephosphorylation ability. APs catalyzes the hydrolysis of monoesters into phosphoric acid which in turn catalyze a transphosphorylation reaction. Thiazoles are nitrogen and sulfur containing aromatic heterocycles considered as effective APs inhibitors. In this context, the current research paper presents the successful synthesis, spectroscopic characterization and in vitro alkaline phosphatase inhibitory potential of new thiazole derivatives. The structure activity relationship and molecular docking studies were performed to find out the binding modes of the screened compounds with the target site of tissue non-specific alkaline phosphatase (h-TNAP) as well as intestinal alkaline phosphatase (h-IAP). Compound 5e was found to be potent inhibitor of h-TNAP with IC50 value of 0.17 ± 0.01 µM. Additionally, compounds 5a and 5i were found to be highly selective toward h-TNAP with IC50 values of 0.25 ± 0.01 µM and 0.21 ± 0.02 µM, respectively. In case of h-IAP compound 5f was the most potent inhibitor with IC50 value of 1.33 ± 0.10 µM. The most active compounds were resort to molecular docking studies on h-TNAP and h-IAP to explore the possible binding interactions of enzyme-ligand complexes. Molecular dynamic simulations were carried out to investigate the overall stability of protein in apo and holo state.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Intestinos/embriologia , Tiazóis/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...